Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Proc Natl Acad Sci U S A ; 120(4): e2202820120, 2023 01 24.
Article in English | MEDLINE | ID: covidwho-2232600

ABSTRACT

Human coronavirus 229E (HCoV-229E) and NL63 (HCoV-NL63) are endemic causes of upper respiratory infections such as the "common cold" but may occasionally cause severe lower respiratory tract disease in the elderly and immunocompromised patients. There are no approved antiviral drugs or vaccines for these common cold coronaviruses (CCCoV). The recent emergence of COVID-19 and the possible cross-reactive antibody and T cell responses between these CCCoV and SARS-CoV-2 emphasize the need to develop experimental animal models for CCCoV. Mice are an ideal experimental animal model for such studies, but are resistant to HCoV-229E and HCoV-NL63 infections. Here, we generated 229E and NL63 mouse models by exogenous delivery of their receptors, human hAPN and hACE2 using replication-deficient adenoviruses (Ad5-hAPN and Ad5-hACE2), respectively. Ad5-hAPN- and Ad5-hACE2-sensitized IFNAR-/- and STAT1-/- mice developed pneumonia characterized by inflammatory cell infiltration with virus clearance occurring 7 d post infection. Ad5-hAPN- and Ad5-hACE2-sensitized mice generated virus-specific T cells and neutralizing antibodies after 229E or NL63 infection, respectively. Remdesivir and a vaccine candidate targeting spike protein of 229E and NL63 accelerated viral clearance of virus in these mice. 229E- and NL63-infected mice were partially protected from SARS-CoV-2 infection, likely mediated by cross-reactive T cell responses. Ad5-hAPN- and Ad5-hACE2-transduced mice are useful for studying pathogenesis and immune responses induced by HCoV-229E and HCoV-NL63 infections and for validation of broadly protective vaccines, antibodies, and therapeutics against human respiratory coronaviruses including SARS-CoV-2.


Subject(s)
COVID-19 , Common Cold , Coronavirus 229E, Human , Coronavirus NL63, Human , Humans , Animals , Mice , Aged , SARS-CoV-2 , Cross Protection
2.
Comput Struct Biotechnol J ; 20: 2442-2454, 2022.
Article in English | MEDLINE | ID: covidwho-1894921

ABSTRACT

Cathepsin L (CTSL), a cysteine protease that can cleave and activate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, could be a promising therapeutic target for coronavirus disease 2019 (COVID-19). However, there is still no clinically available CTSL inhibitor that can be used. Here, we applied Chemprop, a newly trained directed-message passing deep neural network approach, to identify small molecules and FDA-approved drugs that can block CTSL activity to expand the discovery of CTSL inhibitors for drug development and repurposing for COVID-19. We found 5 molecules (Mg-132, Z-FA-FMK, leupeptin hemisulfate, Mg-101 and calpeptin) that were able to significantly inhibit the activity of CTSL in the nanomolar range and inhibit the infection of both pseudotype and live SARS-CoV-2. Notably, we discovered that daptomycin, an FDA-approved antibiotic, has a prominent CTSL inhibitory effect and can inhibit SARS-CoV-2 pseudovirus infection. Further, molecular docking calculation showed stable and robust binding of these compounds with CTSL. In conclusion, this study suggested for the first time that Chemprop is ideally suited to predict additional inhibitors of enzymes and revealed the noteworthy strategy for screening novel molecules and drugs for the treatment of COVID-19 and other diseases with unmet needs.

3.
Adv Biol (Weinh) ; 6(5): e2200007, 2022 May.
Article in English | MEDLINE | ID: covidwho-1706513

ABSTRACT

In humans, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause medical complications across various tissues and organs. Despite the advances to understanding the pathogenesis of SARS-CoV-2, its tissue tropism and interactions with host cells have not been fully understood. Existing clinical data have revealed disordered calcium and phosphorus metabolism in Coronavirus Disease 2019 (COVID-19) patients, suggesting possible infection or damage in the human skeleton system by SARS-CoV-2. Herein, SARS-CoV-2 infection in mouse models with wild-type and beta strain (B.1.351) viruses is investigated, and it is found that bone marrow-derived macrophages (BMMs) can be efficiently infected in vivo. Single-cell RNA sequencing (scRNA-Seq) analyses of infected BMMs identify distinct clusters of susceptible macrophages, including those related to osteoblast differentiation. Interestingly, SARS-CoV-2 entry on BMMs is dependent on the expression of neuropilin-1 (NRP1) rather than the widely recognized receptor angiotensin-converting enzyme 2 (ACE2). The loss of NRP1 expression during BMM-to-osteoclast differentiation or NRP1 neutralization and knockdown can significantly inhibit SARS-CoV-2 infection in BMMs. Importantly, it is found that authentic SARS-CoV-2 infection impedes BMM-to-osteoclast differentiation. Collectively, this study provides evidence for NRP1-mediated SARS-CoV-2 infection in BMMs and establishes a potential link between disturbed osteoclast differentiation and disordered skeleton metabolism in COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Macrophages/metabolism , Mice , Neuropilin-1/genetics , Osteoclasts/metabolism
4.
Front Immunol ; 12: 724763, 2021.
Article in English | MEDLINE | ID: covidwho-1399141

ABSTRACT

Characterizing the serologic features of asymptomatic SARS-CoV-2 infection is imperative to improve diagnostics and control of SARS-CoV-2 transmission. In this study, we evaluated the antibody profiles in 272 plasma samples collected from 59 COVID-19 patients, consisting of 18 asymptomatic patients, 33 mildly ill patients and 8 severely ill patients. We measured the IgG against five viral structural proteins, different isotypes of immunoglobulins against the Receptor Binding Domain (RBD) protein, and neutralizing antibodies. The results showed that the overall antibody response was lower in asymptomatic infections than in symptomatic infections throughout the disease course. In contrast to symptomatic patients, asymptomatic patients showed a dominant IgG-response towards the RBD protein, but not IgM and IgA. Neutralizing antibody titers had linear correlations with IgA/IgM/IgG levels against SARS-CoV-2-RBD, as well as with IgG levels against multiple SARS-CoV-2 structural proteins, especially with anti-RBD or anti-S2 IgG. In addition, the sensitivity of anti-S2-IgG is better in identifying asymptomatic infections at early time post infection compared to anti-RBD-IgG. These data suggest that asymptomatic infections elicit weaker antibody responses, and primarily induce IgG antibody responses rather than IgA or IgM antibody responses. Detection of IgG against the S2 protein could supplement nucleic acid testing to identify asymptomatic patients. This study provides an antibody detection scheme for asymptomatic infections, which may contribute to epidemic prevention and control.


Subject(s)
Antibodies, Viral/blood , Asymptomatic Infections , Immunoglobulin G/blood , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Structural Proteins/immunology , Adolescent , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/physiology , Binding Sites, Antibody , Female , Humans , Immunoglobulin G/classification , Immunoglobulin M/immunology , Kinetics , Male , Middle Aged , Neutralization Tests/statistics & numerical data , SARS-CoV-2/chemistry , Young Adult
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.14.439793

ABSTRACT

SARS-CoV-2 infection in human can cause medical complications across various tissues and organs. Despite of the advances to understanding the pathogenesis of SARS-CoV-2, its tissue tropism and interactions with host cells have not been fully understood. Existing clinical data have suggested possible SARS-CoV-2 infection in human skeleton system. In the present study, we found that authentic SARS-CoV-2 could efficiently infect human and mouse bone marrow-derived macrophages (BMMs) and alter the expression of macrophage chemotaxis and osteoclast-related genes. Importantly, in a mouse SARS-CoV-2 infection model that was enabled by the intranasal adenoviral (AdV) delivery of human angiotensin converting enzyme 2 (hACE2), SARS-CoV-2 was found to be present in femoral BMMs as determined by in situ immunofluorescence analysis. Using single-cell RNA sequencing (scRNA-Seq), we characterized SARS-CoV-2 infection in BMMs. Importantly, SARS-CoV-2 entry on BMMs appeared to be dependent on the expression of neuropilin-1 (NRP1) rather than the widely recognized receptor ACE2. It was also noted that unlike brain macrophages which displayed aging-dependent NRP1 expression, BMMs from neonatal and aged mice had constant NRP1 expression, making BMMs constantly vulnerable target cells for SARS-CoV-2. Furthermore, it was found that the abolished SARS-CoV-2 entry in BMM-derived osteoclasts was associated with the loss of NRP1 expression during BMM-to-osteoclast differentiation. Collectively, our study has suggested that NRP1 can mediate SARS-CoV-2 infection in BMMs, which precautions the potential impact of SARS-CoV-2 infection on human skeleton system.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL